¡ñÊ×Ò³ ¡ñ ¼ÓÈëÊÕ²Ø ¡ñ ÍøÕ¾µØͼ ¡ñ ÈȵãרÌâ ¡ñ ÍøÕ¾ËÑË÷ [RSS¶©ÔÄ] [WAP·ÃÎÊ]  
ÓïÑÔÑ¡Ôñ£º
Ó¢ÓïÁªÃË | www.enun.cn
Ó¢Óïѧϰ | Ó¢ÓïÔĶÁ | Ó¢Óïд×÷ | Ó¢ÓïÌýÁ¦ | Ó¢ÓïÓï·¨ | ×ۺϿÚÓï | ¿¼ÊÔ´óÈ« | Ó¢ÓïËÄÁù | Ó¢Óï¿ÎÌà | ¹ã²¥Ó¢Óï | ÐÐÒµÓ¢Óï | ³ö¹úÁôѧ
Æ·ÅÆÓ¢Óï | ʵÓÃÓ¢Óï | Ó¢ÎĸèÇú | Ó°ÊÓÓ¢Óï | ÓÄĬЦ»° | Ó¢ÓïÓÎÏ· | ¶ùͯӢÓï | Ó¢Óï·­Òë | Ó¢Óï½²ÑÝ | ÇóÖ°¼òÀú | °ÂÔËÓ¢Óï | Ó¢ÎÄ×£¸£
±³¾°£º#EDF0F5 #FAFBE6 #FFF2E2 #FDE6E0 #F3FFE1 #DAFAF3 #EAEAEF ĬÈÏ  
ÔĶÁÄÚÈÝ

ʳƷרҵӢÓï LESSON 2 Carbohydrates

[ÈÕÆÚ£º2006-07-11]   [×ÖÌ壺´ó ÖРС]
The food scientist has a many-sided interest in carbohydrates. He is concerned with their amounts in various foods, availability (nutritional and economic), methods of extraction and analysis, commercial forms and purity, nutritional valve, physiological effects, and functional properties in foods. Understanding their functional properties in processed foods requires not only knowledge of the physical and chemical properties of isolated carbohydrates, but also knowledge of the reactions and interactions that occur in situs between carbohydrates and other food constituents and the effects of these changes upon food quality and acceptance. This is a tall order for knowledge. Because processing affects both nutritional and esthetic values of food, knowledge of the changes that carbohydrates undergo during milling, cooking, dehydration, freezing, and storage is especially important.

   Students are advised to study the fundamental chemistry underlying useful carbohydrates properties Of service will be an understanding of the association of polar molecules through hydrogen bonding, ionic effects, substituent effects, chelation with inorganic ions, complexing with lipids and proteins, and decomposition reaction. This background will provide an understanding of properties that affect the texture and acceptance of processed foods (e.g., solubility, hygroscopicity, diffusion, osmosis, viscosity, plastity, and flavor production), properties that enable the formation or high quality pastries, gels, coatings, confections, and reconstitutable dehydrated and frozen foods.

  Ability to predict what changes in functional properties are likely to ensue from incorporating various types of carbohydrates into processed foods is a practical goal of the food scientist.Such forecasting requires either a wealth of experience with trial-and-error methods or a deep knowledge of carbohydrate properties as related to structure¡ªperhaps both. However, scientific knowledge of cause and effect is highly respected when it shortens industrial development time ¡¡

 

       Source, Types, and Terminology

 

  The layman¡¯s conception of carbohydrates generally involves only the sugars and starches of foods¡ªthose that generate calories and fat. The food chemist knows many other types that are ingested.

      Because most people enjoy the sweetness of sugars and the mouth feel of cooked starches, they become familiar by association with table sugar (sucrose), invert sugar¡¯s hydrolyzed sucrose, corn syrup sugars (D-glucose and maltose), milk sugar (lactose), and the more starchy foods. These carbohydrates are nutritionally available; i .e., they are digested (hydrolyzed to component monosaccharides) and utilized by the human body¡£Carbohydrates of dietary fiber (cellulose, hemicelluse,  pentosans, and pectic substances), in contrast, tend to be overlooked because they are largely unavailable. Digestive enzymes do not hydrolyze them significantly; nevertheless, they may be quite important for human health.

  The carbohydrates of natural and processed foods are divided into available and unavailable types. The available carbohydrates vary in deGREes of absorption and utilization depending upon quantities ingested, accompanying food types, and human differences in complements of defective enzymes and intestinal transport mechanisms. Malabsorption difficulties and adverse physiological effects are known for all the available carbohydrates but gelatinized starches give little or no trouble.

  It is important to realize that in ruminants the unavailable and most abundant polysaccharide cellulose is partially hydrolyzed to the same highly available sugar that starch provides upon digestion; i.e. D-glucose. Grazing animals do it through the celluloses generated by the microorganisms of their rumen. Cellulose is, therefore, a contributing source of voluble animal protein. Food chemists probably can improve upon the efficiency and economics of the ruminant¡¯s conversion of cellulose to nutrients. Development of celluloses that are stable outside the cells of microorganisms enables the culturing of fungi and with yeasts on cellulose hydrolyzates. Fungi (e.g., mushrooms) can produce protein with the biological value of animal protein. The conversion of cellulose wastes to animal feed and human food is an intriguing prospect for limiting environmental pollution and for feeding the world¡¯ expending population.

  Carbohydrates were first named according to their natural sources; e.g., beet sugar, cane sugar, grape sugar, malt sugar, milk sugar, cornstarch, liver glycogen, and sweet corn glycogen. Trivial names were then formed, in English terminology, often from a prefix related to the source followed by the suffix ¡°-ose¡± to denote carbohydrate. Names arising in this way, for example, are fructose, maltose, lactose, xylose, and cellulose. These short, well-established names are still commonly used. They furnish no information on the chemical structures however, so a definitive carbohydrate nomenclature has been developed. From the definitive names, structural formulas can be written. Some of the terms involved in the definitive nomenclature are explained in the following paragraphs.

  The simple sugars (monosaccharides0 are basically aliphatic polyhydroxy aldehydes and ketones: HOCH2- (CHOH) n-CHO and HOCH2- (CHOOH) n-1-C-O-Ch2OH, called ¡°aldoses¡± and ¡°ketoses,¡± respectively. However, it must be understood that cyclic hemiacetals of those open-chain forms prevail I solids and at equilibrium in solutions. In the definitive nomenclature, the suffix ¡°ose¡± is appended to prefixes denoting the number of carbon atoms in the nomosaccaride; e.g. trioses (n=1), tetroses (n=2), pentoses (n=3), hexoses (n=4) to distinguish aldoses from ketoses, ketoses are designated as¡±-uloses.¡± Thus, the simplest ketose, HOCH2-C:O-CH2OH, is a triulose; the most common ketose, D-fructose (levulose), is a hexlose. To designate the configurations of hydroxyl groups on the asymmetric carbon atoms of monosaccharides, the prefixes D and L are used together with prefixes derived from the trivial sugar names (e.g., D-glycero-, L-arabino-, D-xylo-) followed by pentose, hexose hexulose, etc.

  As open-chain hydroxy aldehydes and hydroxyl ketenes, the monosaccharides are very reactive. They readly enolize in alkaline soluions to reduce ions such as Cu2+ and Fe(CN)63-. Therefore, they are called ¡°reducing sugars¡±. Plants protect the reactive monosaccharides for transport and storage by condensing them with loss of water, into less reactive sugars, e.g., D-glucose and D-fructose, are condensing in such a way that their reactive functions are lost to form the disaccharide no reducing sugar, sucrose. The less reactive sucrose is then transported to all parts of the plant for enzymin syntheses of oligo-and polysaccharides. From thousands or more D-glucose moieties of sucrose the glucans, starch and cellulose, are built. From the D-fructose moiety of sucrose, fructans such as inulin are assembled. Other polysaccharides are formed from other sugar, which rose by enzymic transformations of phosphorylated hexoes and sugar nucleotides.

The prefix ¡°glyc,¡± is used in a generic sense to designate sugars and their derivatives; e.g., glycoses, glycosides, glycosans, glyconic glyceric, and glycuronic acids. The generic name for polysaccharides is ¡°glycan¡±homoglycansare composed of single monosaccharide; for example, the D-glucans, cellulose and starch, release only D-glucose by hydrolysis. Other homoglycans (e.g., the hexcsans, D-galactan and D-manan, and the pentosans, L-arabinan and D-xy-lan) are uncommon in nature. Heteroglycans, composed of two or more different monosaccharides, are widely distributed than the homoglycans that are not glucans. Galactomnnans, glucomammans, arabinogalactans, and arabinoxylans are common diheteroglycans(composed of two sugars).the glycant vail over free glycoses in natural foods.

  The reducing sugars are readily oxidized. mild oxidation of aldoses yields aldonic acids, HOCH2-(CHOH)n-COOH; e.g., gluconic acid(n=4).oxidation of both ends of the aldose molecule yields aldaric acids, HOOC-(CHOH)n-COOH; e.g., tartaric acid(n=2). Oxidation of the terminal CH2OH group of hexoses without oxidation of the reducing function (protected) produces hexuronic acids, HOOC-(CHOH)-CHO. The hexuronic acids are common monosaccharide constituents of many heteroglycans .for example, they are found in acidic hemicelluloses, pectic substances, alginpl and exudate gumes, and the mucopolysaccharides of mammalian tissues. Penturonic acids have not been found in nature.

  Reduction of aldoses or ketoses yield sugar alcohols ,properly called ¡®alditols,¡± HOCH2-(CHOH)n-CH2OH.the suffix ¡°-itol ¡° is applied to the trivial prefixes to denote different alditols; e.g., D-glucitol, D-manniitol, xylitol. The triitol, gllyceritol (by common usage, glycerol, n=1), is the alditol moiety of fats.Glycerol and D-glucitol(sorbitol) are acceptable and useful food addiaffinity for water. Pentitols(n=3) and hexutols(n=4) are found in small amount in many fruits, vegetables and hexitol, perseitol (n=5), and an octitol have been isolated from avocados. Some aditols are nutritionally available; others are not.

  Other types of carbohydrates found in food are the condensed N-acetylated amino sugars of mucopolysaccharides, glycoproteins, and chitin; the condense deoxy sugars of gum, mucilages, and nucleotides; glcosides (sugars condensed with nonsugars); glucosinolates (toxic thioglycosides); cyclitols (myoinositol, phytic acid); and reductone, L-ascorbic acid.

  Complex carbohydrates, such as cellulose and hemicellulose, are largely indigestible, as are a number of origins

 

             Carbohydrate Composition of Foods

 

   Detains need more exact information on the carbohydrate compassion of foods. Food pressers also make practical use of carbohydrate composition data. For example, the reducing sugar content of fruits and vegetables that are to be dehydrated or processed with heat is frequently an indicator of the extent of nonenzymic browing that can expected during processing and storage. The possible hydrolysis of sucrose to reducing sugars during processing also is to be considered .the natural changes in carbohydrate composition that occur during maturation and post harvest ripening of plant foods is therefore of particular interest to food chemists.

  Citrus fruits, which normally ripen on the tree and contain no starch, undergo little change in carbohydrate composition following harvest. However, in fruit that are picked before complete ripening (e.g., apples, bananas, pears), much of the stored starch is converted to sugars as ripening process. The reducing sugar content of potatoes also increase during the sun drying of grapes and dates, sucrose is converted to D-glucose and D-fructose; accordingly, the color of the dried products is deepened by nonenzymic browning reactions.

  GREen peas, green beans, and sweet corn are picked before maturity to obtain succulent textures and sweetness. Later the sugars would be converted to polysaccharides, water would be lost, and tough textures would develop. In soybean, which is allowed to mature completely before harvest, the starch reserve is depleted as sucrose and galactosy lsucroses (raffinose, stachyose, verbascose, etc.) are form in the malting of cereal grains, rapid conversions of reserve carbohydrate to sugars occur as enzymes are strongly activated.

  In foods of animal origin, postmortem activity of enzymes must be considered when carbohydrate composition data is obtained. The glycogen of animal tissues, especially liver is rapidly depolymerized to D-glucose after slaughter, and immediate deep freezing is required to preserve the glycogen. Mammalian internal organs, such as liver, kidney, and brains also eggs and shellfish, provide small amount of D-glucose in the diet .Red fresh meats contain only traces of available carbohydrate (D-glucose, D-fructose, and D-ribose) and these are extracted into bouillons and broths. Dairy products provide the main source of mammalian carbohydrate. Whole cow¡¯s milk contains about 4.9% carbohydrates and dried skim milk contains over 50% lactose.

  Examination of food composition tables shows that in general, cereals are highest in starch content and lowest in sugars. Fruit are highest in free sugars and lowest in starch .on a dry basis, the edible portions of fruit usually contain 80-90% carbohydrate. Legumes occupy intermediate portion with regard to starch and are high in unavailable carbohydrate.

  Glycosides of many types are widely distributed in plants. Certain biologically active thioglucosides, properly called ¡°glucosinolates¡±, are found in significant amount in crucifers. Mustard oils, nitriles, and goitrins are released by enzymic hydrolysis. Their suspected goitrogenic in humans have been investigated, but the amount of glucosnolates normally consumed in food such as fresh cabbage (300-1000ppm), cauliflower, Brussels sprouts, turning, rutabagas, and radishes are not now believed to cause adverse physiological effects. Cyan genetic glycosides, which release hydrogen cyanide by enzymic hydrolysis under certain condition of vegetable maceration, are known to be sources of acute toxicity in certain animal feeds; however they are not active in the customary foods of developed countries. Certain foreign varieties of lima beans and manic root (cassava) may yield up to 0.3% hydrogen cyanide by weight, but lima beans distributed in the United States yield less than 0.02%. Saponins, the surface-active glycosides of steroids and triterpenoids, are found in low concentrations in tealeaves, spinach, asparagus, beets sugar beet (0.3%), yams, soybeans (0.5%), alfalfa (2-3%), and peanuts and other legumes.

 

µÚ¶þ¿Î  ̼ˮ»¯ºÏÎï

    ʳƷ¿Æѧ¼Ò¶Ô̼ˮ»¯ºÏÎïÓÐ×Ŷ෽ÃæµÄÐËȤ¡£ËûÃǹØÐÄ̼ˮ»¯ºÏÎïÔÚ¸÷ÖÖʳƷÖеĺ¬Á¿£¬¹ØÐÄËüµÄ¿ÉÀûÓÃÐÔ£¨ÓªÑøÉϺ;­¼ÃÉÏ£©£¬ËüµÄÌáÈ¡·½·¨ºÍ·ÖÎö·½·¨£¬ËüµÄÉÌÆ·ÐÎʽºÍ´¿¶È£¬ËüµÄÓªÑø¼ÛÖµ¡¢ÉúÀíЧÓÃÒÔ¼°ÔÚʳƷÖеŦÄÜÌØÐÔ¡£ÒªÁ˽â̼ˮ»¯ºÏÎïÔÚ¼Ó¹¤Ê³Æ·ÖеŦÄÜÌØÐÔ£¬²»½öÒªÓе¥Àë̬̼ˮ»¯ºÏÎïµÄÎïÀí¡¢»¯Ñ§ÐÔÖʵÄ֪ʶ£¬»¹ÒªÓÐ̼ˮ»¯ºÏÎïÓëÆäËüʳÎï³É·ÖÖ®¼äÔÚ¼Ó¹¤Ê³Æ·Öо͵ØËù·¢ÉúµÄ·´Ó¦ºÍÏ໥×÷ÓõÄ֪ʶ£¬ÒÔ¼°ÕâЩ·´Ó³±ä»¯¶ÔʳƷÖÊÁ¿ºÍʳƷ¿É½ÓÊÜÐÔµÄÓ°ÏìµÄ֪ʶ¡£ÏÔȻҪÁ˽âÕâЩ֪ʶÊDz»ÈÝÒ׵ġ£ÓÉÓÚʳƷ¼Ó¹¤¹ý³Ì¼ÈÓ°ÏìʳƷµÄÓªÑø¼ÛÖµ£¬Ò²Ó°ÏìËüµÄÃÀѧ¼ÛÖµ¡£ËùÒÔÁ˽â̼ˮ»¯ºÏÎïÔÚÑÐÄ¥¡¢ÈÈ´¦Àí¡¢ÍÑË®¡¢À䶳ºÍÖü²Ø¹ý³ÌÖÐËù¾­Êܵı仯¾ÍÏÔµÃÌرðÖØÒª¡£

    ½¨ÒéѧԱÃÇѧϰ»ù´¡»¯Ñ§£¬ÕâʱÈÏʶ̼ˮ»¯ºÏÎïÓÐÓÃÐÔÖʵĻù´¡¡£Á˽âºÍÈÏʶ¼«ÐÔ·Ö×Óͨ¹ýÇâ¼ü¡¢Àë×ÓЧӦ¡¢È¡´ú»ùЧӦ¡¢ÓëÎÞ»úÀë×ÓòüºÏ¡¢ÓëÖ¬ÀàºÍµ°°×ÖÊÂçºÍÒÔ¼°·Ö½â·´Ó¦µÈµÄµÞºÍ×÷Óý«¾ßÓÐÖØÒªµÄÒâÒå¡£ÕâЩ»ù´¡ÖªÊ¶½«ÓÐÖúÓÚÎÒÃÇÁ˽âÓ°Ïì¼Ó¹¤Ê³Æ·µÄÖʹ¹ºÍ¿É½ÓÊÜÐÔµÄÐÔÖÊ£¨ÀýÈçÈܽâ¶È¡¢ÎüʪÐÔ¡¢À©É¢ÐÔ¡¢Éø͸ÐÔ¡¢Õ³¶È¡¢¿ÉËÜÐÔ¡¢·çζÐγɣ©£¬Á˽âʹÓÅÖʸâµã¡¢Äý½ºÊ³Æ·¡¢ÌÇÒ¡¢ÌǹûºÍ¿É¸´Ô­ÍÑˮʳƷ¡¢À䶳ʳƷµÃÒÔÐγɵÄÐÔÖÊ¡£

    ʳƷ¿Æѧ¼Òʵ¼Ê¹¤×÷Ä¿±êÖ®Ò»ÊÇÄܹ»Ô¤²âÔڰѸ÷ÖÖ¸÷Ñù̼ˮ»¯ºÏÎï²ôµ½¼Ó¹¤Ê³Æ·ÖÐÖ®ºó£¬¿ÉÄܻᷢÉúʲôÑùµÄ¹¦ÄÜÐÔÖʱ仯¡£×÷ÕâÑùµÄÔ¤²âÒªÓзḻµÄÓÃÊÔ̽·¨ÃþË÷µÄ¾­Ñ飬»òÕßÒª¾ß±¸ÓйؽṹµÄ̼ˮ»¯ºÏÎïµÄÐÔÖʵÄÉî°Â֪ʶ£¬Ò²¿ÉÄÜÉÏÊöÁ½Õ߶¼Òª¾ß±¸¡£²»¹ý£¬¿ÆѧµÄÒò¹û¹Øϵ֪ʶֻÓÐÔÚËüËõ¶ÌÁ˹¤Òµ²úÆ·ÊÔÖÆÖÜÆÚ֮ʱ²ÅÊܵ½¸ß¶ÈµÄÖØÊÓ¡£

̼ˮ»¯ºÏÎïµÄÀ´Ô´¡¢ÖÖÀàºÍ¼¼ÊõÃû³Æ   

    ÍâÐÐÈ˵Ä̼ˮ»¯ºÏÎï¸ÅÄîÒ»°ã½ö°üÀ¨Ê³ÎïÖÐÄܲúÉúÈÈÁ¿ºÍÖ¬·¾µÄÌǺ͵í·Û£¬¶øʳƷ¿Æѧ¼Ò»¹ÖªµÀÐí¶àÉãÈëµÄËûÖÖ̼ˮ»¯ºÏÎï¡£

    ÓÉÓÚ´ó¶àÊýÈËϲ»¶ÌǵÄÌðζºÍÊìµí·ÛµÄ¿Ú¸Ð£¬ËùÒÔËüÃÇÓÉÓÚ¾­³£´ò½»µÀ¶ø¶ÔʳÌÇ¡¢£¨ÕáÌÇ£©¡¢×ª»¯ÌÇ£¨ÕáÌÇË®½â²úÎ¡¢µí·ÛÌǽ¬£¨D-ÆÏÌÑÌǺÍÂóÑ¿ÌÇ£©¡¢ÈéÌǺͺ¬µí·Û¶àµÄʳƷʮ·ÖÊìϤ¡£ÕâЩ̼ˮ»¯ºÏÎﶼÓкܺõÄÓªÑø¼ÛÖµ£¬¼´ËüÃÇ¿É·ÖΪÈËÌåËùÏû»¯£¨Ë®½â³Éµ¥Ìdzɷ֣©ºÍÀûÓá£Ïà·´£¬Ê³ÓÃÏËάÀà̼ˮ»¯ºÏÎÏËάËØ¡¢°ëÏËάËØ¡¢Îì¾ÛÌÇ¡¢¹û½ºÎïÖÊ£©ÒòÆä´ó²¿·Ö²»ÄÜΪÈËÌåËùÀûÓöøÍùÍù±»ºöÊÓ¡£Ê³ÓÃÏËάÀà̼ˮ»¯ºÏÎï²»ÄÜÓÐЧµÄ±»Ïû»¯Ã¸Ë®½â£»¾¡¹ÜÕâÑù£¬Ëû¶ÔÈËÌåµÄ½¡¿µ¿ÉÄÜÏ൱ÖØÒª¡£

    ÌìȻʳÎïºÍ¼Ó¹¤Ê³ÎïÖеÄ̼ˮ»¯ºÏÎï±»·Ö³ÉÈËÌå¿ÉÀûÓúͲ»¿ÉÀûÓõÄÁ½Àà¡£¿ÉÀûÓõÄ̼ˮ»¯ºÏÎïÔÚÎüÊÕ¡¢ÀûÓõij̶ÈÉÏÒ²Óвî±ð£¬Òª¿´ËûµÄÉãÈëÁ¿¡¢°éËæʳÎïµÄÖÖÀàÒÔ¼°ÈËÌåÔÚÏû»¯Ã¸»¥²¹Çé¿öÉϺͳ¦µÀÊäËÍ»úÖÆÉϵIJîÒì¶ø¶¨¡£´ó¼Ò¶¼ÖªµÀ£¬³ýÁ˺ý»¯µí·Û´óÖÂÉÏûÓÐÎÊÌâÒÔÍ⣬ËùÓпÉÀûÓÃ̼ˮ»¯ºÏÎﶼÓÐÎüÊÕ²»Á¼µÄÎÊÌâºÍÓꦵÄÉúÀíÓ°Ïì¡£

    ÖØÒªµÄÊÇÒªÒâʶµ½£¬ÔÚ·´Û»¶¯Îï·½Ã棬ÊýÁ¿×î·á¸»µÄÈËÀ಻¿ÉÀûÓõĶàÌÇÀàÏËάËØÊܵ½Á˲¿·ÖË®½â£¬±ä³ÉÁ˵í·ÛÏû»¯Ê±ËùÐγɵĸ߶ȿÉÀûÓÃÌÇ£¬¼´D-ÆÏÌÑÌÇ¡£Ê³²Ý¶¯ÎïÀûÓÃËüÃÇÁöθÖÐ΢ÉúÎïËù²úÉúµÄÏËάËØøÀ´Ë®½âÏËάËØ¡£Òò´Ë£¬ÏËάËضÔÓмÛÖµµÄ¶¯Îïµ°°×¶øÑÔÊÇÓÐÒ»¶¨¹±Ï×µÄ×ÊÔ´¡£·´Û»¶¯ÎォÏËάËØת»¯ÎªÓªÑøËصÄЧÂʺ;­¼ÃÐÔÓпÉÄܾ­¹ýʳƷ»¯Ñ§¼ÒÀ´¸Ä½ø¡£¿ª·¢ÔÚ΢ÉúÎïϸ°ûÍⲿÄÜÎȶ¨´æÔÚµÄÏËάËØøʹÕæ¾úºÍ½ÍĸÔÚÏËάËØË®½â²úÎïÉÏÅàÑøÓÐÁË¿ÉÄÜ¡£Õæ¾ú£¨ÈçÄ¢¹½£©Äܲú³ö¾ßÓж¯ÎïÐÔµ°°×ÖÊÉúÀíЧ¼ÛµÄµ°°×ÖÊ¡£¶ÔÓÚ¿ØÖÆ»·¾³ÎÛȾºÍ¹©Ó¦Ôö³¤×ŵÄÊÀ½çÈË¿ÚµÄʳƷÀ´Ëµ£¬½«ÏËάËØ·ÏÁÏת»¯Îª¶¯ÎïËÇÁϺÍÈËÀàʳÎïÓÐ×ÅÓÕÈ˵ÄÇ°¾°¡£

    ̼ˮ»¯ºÏÎï×î³õÊÇ°´ÕÕËüÃǵÄÌìÈ»À´Ô´À´ÃüÃûµÄ£¬ÀýÈçÌð²ËÌÇ¡¢¸ÊÕáÌÇ¡¢ÆÏÌÑÌÇ¡¢ÂóÑ¿ÌÇ¡¢ÈéÌÇ¡¢ÓñÃ×µí·Û¡¢¸ÎÌÇÔ­¡¢ÌðÓñÃ×ÌÇÔ­¡£ÒÔºóµÄÓ¢ÓïÃû³ÆÖоÍÐγÉÁ˳ªÒÔǰ׺±íʾÀ´Ô´£¬¼Óºó׺¡°-ose¡±±íʾ̼ˮ»¯ºÏÎïµÄË×Ãû¡£ÓÉ´Ë·¨²úÉúµÄÃû³Æ£¬ÓÐÈ磺fructose£¨¹ûÌÇ£©¡¢maltose£¨ÂóÑ¿ÌÇ£©¡¢lactose£¨ÈéÌÇ£©¡¢ xylose £¨Ä¾ÌÇ£©¡¢cellulose£¨ÏËάËØ£©µÈ¡£ÕâЩ¼ò¶Ì¶øÃ÷È·µÄÃû³ÆÏÖÔÚÈÔͨÓ᣿ÉÊÇ£¬ÕâЩÃû³Æ²»·´Ó³Æ仯ѧ½á¹¹¡£ÓÚÊǾͲúÉúÁË̼ˮ»¯ºÏÎïµÄ¶¨ÐÎÃüÃû·¨¡£¹ú¼Ê¶¨ÐÎÃû³Æ£¬¿ÉÒÔд³öÆä½á¹¹Ê½¡£ÏÂÃ漸¶Î½«¶ÔijЩÉæ¼°¶¨ÐÎÃüÃû·¨µÄרÃÅÊõÓï×÷³ö½âÊÍ¡£

    µ¥ÌDZ¾ÖÊÉÏÊÇÖ¬×åµÄ¶àôÇ»ùÈ©ºÍͪ£¬¼´HOCH2-(CHOH)2-CHOºÍHOCH2-(CHOH)n-1-C:O-CH2OH,·Ö±ð³ÆΪȩÌǺÍͪÌÇ¡£²»¹ýÒªÖªµÀ£¬¹ÌÌåÖкÍƽºâʱÈÜÒºÖеĵ¥ÌÇÊÇÒÔ¿ªÁ´ÐÍ»·×´°ëËõÈ©Õ¼¶àÊý¡£ÔÚ¶¨ÐÎÃüÃû·¨ÖУ¬µ¥ÌÇÃûÓɱíʾµ¥ÌÇ̼ԭ×ÓÊýµÄǰ׺¼Óºó׺¡°-ose¡±¹¹³É¡£ÀýÈç±ûÌÇ£¨trioses£¬n=1£©¡¢¶¡ÌÇ£¨tetroses£¬n=2£©¡¢ÎìÌÇ£¨pentoses£¬n=3£©£¬¼ºÌÇ£¨hexose£¬n=4£©£¬ÎªÇø±ðÈ©ÌǺÍͪÌÇ£¬¾Í°ÑͪÌǺó׺¼Ó³É¡°-ulose¡±¡£ÕâÑù£¬×î¼òµ¥µÄͪÌÇHOCH2-C£ºO-CH2OH¼´Îªtriulose£¨±ûͪÌÇ£©£»×î³£¼ûµÃͪÌÇD-¹ûÌÇ£¨×óÐýÌÇ£©¼´Îªhexulose£¨¼ºÍªÌÇ£©¡£Îª±íÃ÷µ¥ÌDz»¶Ô³Æ̼ԭ×ÓÉÏôÇ»ùµÄ¹¹ÐÍ£¬¿É½«Ç°×ºDºÍLÓëÈ¡×ÔË×ÃûµÄǰ׺һÆðʹÓã¨ÀýÈçD-¸ÊÓÍ-¡¢L-°¢À­²®-¡¢D-ľ-£©£¬ºóÃæÔÚ½ÓÉÏÎìÌÇ¡¢¼ºÌÇ¡¢¼ºÍªÌǵȵȡ£

    ÒÔ¿ªÁ´µÄôÇ»ùÈ©ºÍôÇ»ùͪÐÎʽ ´æÔڵĵ¥ÌǷdz£»îÆá£ËüÃÇÔÚ¼îÐÔÈÜÒºÖÐÒ×ÓÚÏ©´¼»¯¶øʹCu2+¡¢Fe£¨CN£©63+Ö®ÀàµÄÀë×Ó»¹Ô­£¬Òò´Ë³ÆËüÃÇΪ¡°»¹Ô­ÌÇ¡±¡£Ö²ÎïÒÀ¿¿ÍÑË®ËõºÍ·½Ê½½«»îÆõĵ¥ÌDZä³É²»´ó»îÆõÄÌÇÀàÀ´±£´æµ¥ÌǵĻ¹Ô­»îÐÔ£¬ÒÔ±ãÊäËͺÍÖü´æ¡£ÀýÈ磬D-ÆÏÌÑÌǺÍD-¹ûÌÇËõºÏ³ÉÎÞ»¹Ô­ÐÔË«ÌÇ¡ª¡ªÕáÌÇʱ£¬±äʧȥÁË»îÆõŦÄÜ¡£²»Ì«»îÆõÄÕáÌÇÈ»ºó±»ÊäË͵½Ö²ÎïµÄ¸÷¸ö²¿Î»£¬ÓÉøºÏ³ÉµÍ¾ÛÌǺͶà¾ÛÌÇ¡£ÓÉÊýǧ»ò¸ü¶àµÄ°ë¸öÕáÌÇ·Ö×ÓD-ÆÏÌÑÌǹ¹³ÉÆϾÛÌÇ¡¢µí·ÛºÍÏËάËØ£»¶øÓÉÁí°ë¸öÕáÌÇ·Ö×ÓD-¹ûÌǾۺϳÉΪ¹û¾ÛÌÇ£¬Èç¾Õ·Û¡£ÆäËü¶à¾ÛÌÇÔòÊÇÓÉÁ×Ëữ¼ºÌǺͺËÜÕËáÌÇͨ¹ýø×÷ÓÃÉú³ÉµÄÆäËüÌǾۺÏÐγɵġ£

    ǰ׺¡°glyc¡±£¨¸Ê¡¢ÌÇ£©ÔÚÒ»°ãÒâÒåÉÏÓÃÀ´±íʾÌǼ°ÆäÑÜÉúÎï¡£ÀýÈ磺glycoses£¨µ¥ÌÇ£©¡¢glycosides£¨ÌÇÜÕ£©¡¢glycosans£¨¾ÛÌÇ£©¡¢glyconic acids (ÌÇËá) ¡¢glyconic acids£¨¸ÊÓÍËᣩ¡¢glycuronic acids£¨ÌÇÈ©Ëᣩ¡£¶à¾ÛÌǵÄË×ÃûÊÇ¡°¾ÛÌÇ¡±¡£¾ù¾ÛÌÇÓÉÒ»ÖÖµ¥Ìǹ¹³É¡£ÀýÈçD-ÆϾÛÌÇ¡¢ÏËάËغ͵í·Û£¬ËüÃÇË®½âʱֻ²úÉúD-ÆÏÌÑÌÇ¡£ÆäËü¾ù¾ÛÌÇ£¨ÀýÈ缺¾ÛÌÇD-°ëÈé¾ÛÌǺÍD-¸Ê¶¾ÛÌÇ£»Îì¾ÛÌÇÓÐL-°¢À­²®¾ÛÌÇD-ľ¾ÛÌÇ£©ÔÚ×ÔÈ»½çÖкÜÉÙ¼ûµ½¡£ÔÓ¾ÛÌÇÓÉÁ½ÖÖ»ò¶àÖÖµ¥Ìǹ¹³É¡£ËüÃÇÔÚ×ÔÈ»½çµÄ·Ö²¼±È¾ù¾ÛÌÇ£¨³ýÆϾÛÌÇÍ⣩¹ã·º¡£°ëÈé¸Ê¶¾ÛÌÇ¡¢Æϸʶ¾ÛÌÇ¡¢°¢À­²®°ëÈé¾ÛÌÇ¡¢°¢À­²®Ä¾¾ÛÌÇʱ³£¼ûµÄË«ÔÓ¾ÛÌÇ£¨ÓÉÁ½ÖÖÌÇ×é³É£©¡£ÌìȻʳÎïÖеľÛÌÇ´ó´ó¶àÓàÓÎÀëµ¥ÌÇ¡£

    »¹Ô­ÌÇÒ×ÓÚÑõ»¯¡£È©ÌǾ­Çá¶ÈÑõ»¯¿É²úÉúÈ©ÌÇËᣬHOCH2-£¨CHOH£©n-COOH£¬ÈçÆÏÌÑÌÇËᣨn=4£©¡£È©ÌÇ·Ö×ÓÁ½¶ËÑõ»¯ÐγÉÌǶþËᣬHOOC-£¨CHOH£©n-COOH£¬ÀýÈç¾Æ²úÉúµÄÌÇÈ©ËᣬHOOC-£¨CHOH£©4-CHO¡£¼ºÌÇÈ©ËáÊÇ×é³É¶àÖÖÔÓ¾ÛÌǵij£¼ûµ¥Ìdzɷ֣¬ÀýÈçÔÚËáÐÔ°ëÏËάËØ¡¢¹û½ºÎïÖÊ¡¢ÔåËá¡¢Ö²ÎïÉø³ö½ººÍ²¸È鶯Îï×éÖ¯ÖеÄÕ³¶àÌÇÖоÍÓмºÌÇÈ©Ëá¡£ÎìÌÇÈ©ËỹδÔÚ×ÔÈ»½çÖз¢ÏÖ¡£

    È©ÌÇ»òͪÌDZ»»¹Ô­ºó±ä²úÉúÌÇ´¼£¬È·ÊµµÄ½Ð·¨Îª¡°¶àôÇÌÇ´¼¡±£¨alditols£©£¬HOCH2-£¨CHOH£©n-CH2OH¡£Æäºó׺¡°-itol¡±£¨ÌÇ´¼£©½ÓÔÚË×Ãûǰ׺֮ºó±íʾ²»Í¬µÄ¶àôÇÌÇ´¼£¬ÀýÈçD-ÆÏÌÇ´¼¡¢D-¸Ê¶ÌÇ´¼¡¢Ä¾ÌÇ´¼¡£±ûÌÇ´¼£¬¼´¸ÊÓÍ´¼£¨³£³ÆΪ¸ÊÓÍ£¬n=1£©£¬ÊÇÖ¬·¾µÄ¶àôÇ»ùÌÇ´¼²¿·Ö¡£¸ÊÓͺÍÆÏÌÇ´¼£¨É½Àæ´¼£©³ÉΪÊÜ»¶Ó­µÄÓÐÓõÄʳƷÌí¼Ó¼Á£¬ÒòΪËüÃÇÄÜÉú³ÉÆÏÌÑÌÇ£¬²¢ÒÀ¿¿ÆäÇ¿ÁÒµÄÇ×Ë®×÷Óñ£³ÖʳƷÊÇʪÈó¡£Ðí¶àË®¹û¡¢Ê߲˺͹½ÀàÖдæÔÚÓÐÉÙÁ¿µÄÎìÌÇ´¼£¨n=3£©ºÍ¼ºÌÇ´¼£¨n=4£©¡£¸ýÌÇ´¼¡¢¸Ê¶¸ýÌÇ´¼£¨n=5£©ºÍijÖÖÐÁÌÇ´¼ÒÑ´ÓöùÀæÖзÖÀë³öÀ´¡£ÓÐЩ¶àôÇÌÇ´¼ÊÇÓÐÓªÑøµÄ£¬ÓÐЩÔòÎÞÓªÑø¡£

    ÔÚʳÎïÖз¢ÏÖËüÖÖ̼ˮ»¯ºÏÎﻹÓУºÕ³¶àÌÇ¡¢Ìǵ°°×¡¢¿Ç¶àÌÇÖ®ÀàµÄËõ¾ÛN-ÒÒõ£°±»ùÌÇ£»Ö²Îコ¡¢Õ³½¬¡¢ºËÜÕËáÖ®ÀàµÄËõºÏÍÑÑõÌÇ£»ÌÇÜÕ£¨ÌÇÓë·ÇÌÇËõºÏ£©£»½æ×ÓÓÍÜÕ£¨¶¾ÐÔµÄÁò´úÌÇÜÕ£©£»»·¶àÌÇ£¨¼¡´¼¡¢Ö²Ëᣩ£»L-¿¹»µÑªËᣨһÖÖ»¹Ô­Íª£©¡£

    ¸´ÔÓ̼ˮ»¯ºÏÎïÈçÏËάËØ¡¢°ëÏËάËØ»ù±¾ÉÏÊDz»ÄÜÏû»¯µÄ£¬¾ÍÏóÖ²ÎïÐÔʳÎïÖÐËùÕÒµ½µÄÐí¶àµÍ¾ÛÌÇ¡¢Ä³Ð©ÆäËü̼ˮ»¯ºÏÎï¡¢Ê÷½ººÍÏËάÖʲÄÁÏÒ»Ñù¡£

                            Ê³ÎïÖÐ̼ˮ»¯ºÏÎï×é³É

    ÓªÑøѧ¼ÒÐèÒªÓнÏΪÑϸñµÄÓйØʳÎï̼ˮ»¯ºÏÎï×é³ÉµÄ֪ʶ¡£Ê³Æ·¼Ó¹¤ÕßÒ²°Ñ̼ˮ»¯ºÏÎï×é³ÉµÄ֪ʶÓÃÓÚʵ¼Ê¹¤×÷¡£ÀýÈ磬Óû´ýÍÑË®»òÈÈ´¦ÀíµÄË®¹ûºÍÊ߲ˣ¬Æ仹ԭÌǺ¬Á¿³£³£Ê±Ò»ÏîԤʾ¼Ó¹¤ºÍÖü²Ø¹ý³ÌÖзÇøºÖ±ä³Ì¶ÈµÄÖ¸±ê¡£µ±È»Ò²Òª¿¼ÂǼӹ¤¹ý³ÌÖÐÕáÌÇÓпÉÄÜË®½â±ä³É»¹Ô­ÌÇ¡£Òò´Ë£¬Ê³Æ·»¯Ñ§¼Ò¶ÔÖ²ÎïÐÔʳÎïÔÚ³ÉÊìºÍºóÊìÆÚ¼äËù·¢ÉúµÄ̼ˮ»¯ºÏÎï×é³ÉµÄ×ÔÈ»±ä»¯Ìرð¸ÐÐËȤ¡£

    ÔÚ¹ûÊ÷ÉÏÕý³£³ÉÊìÇÒ²»º¬µí·ÛµÄ¸Ì½ÛÀàË®¹û£¬Æä̼ˮ»¯ºÏÎï×é³ÉÔÚժϺóºÜÉٱ仯¡£¿ÉÊÇ£¬ÔÚÐí¶àÍêÈ«³ÉÊìǰժϵÄË®¹û£¨ÈçÆ»¹û¡¢Ï㽶¡¢À棩ÖУ¬Öü´æµÄ´ó²¿·Öµí·Û»áÔÚ¼ÌÐø³ÉÊìʱת»¯ÎªÌÇ¡£ÂíÁåÊíÔÚÀä²Ø¼ä»¹Ô­ÌǺ¬Á¿Ò²»áÔö¼Ó¡£ÆÏÌѺͺ£ÔæÔÚɹ¸ÉÆڼ䣬ËæÆäÄÚÔ´ÕáÌÇø»îÐԵIJ»Í¬£¬»á²»Í¬³Ì¶ÈµØʹÕáÌÇת»¯D-ÆÏÌÑÌǺÍD-¹ûÌÇ¡£Òò´Ë£¬Æä¸ÉÖÆÆ·µÄÑÕÉ«Ò²»áÒò·ÇøºÖ±ä¶ø¼ÓÉî¡£

    Í㶹¡¢Ç൶¶¹ºÍÌðÓñÃ×ÔÚ³ÉÊìÇ°ÕªÏÂÊÇΪÁË»ñµÃ¶àÖ­ÏÊÄÛµÄÖʹ¹ºÍÌðζ¡£³ÙÁË£¬Ëùº¬µÄÌǾͻáת³É¶à¾ÛÌÇ£¬Ë®·Ö»áʧµô£¬¾Í»á²úÉúÈÍÐÔµÄÖʹ¹¡£Êì͸ºóÔÚÕªÊյĴ󶹣¬Æäµí·Û´¢Á¿ËæÕáÌǺÍÀà°ëÈéÕáÌÇ£¨ÃÞ×ÑÌÇ¡¢Ë®ËÕÌÇ¡¢Ã«ÈﻨÌǵȣ©µÄÐγɶøºÄ¾¡¡£ÓùÈÎï¼Ó¹¤ÂóÑ¿ÌÇʹ£¬ÓÉÓÚø±»¼«¶È»î»¯¶øʹµÃÖü´æµÄ̼ˮ»¯ºÏÎïѸËÙת»¯³ÉÌÇ¡£

    ÔÚ¶¯ÎïÐÔʳÎï·½Ã棬µ±»ñµÃ̼ˮ»¯ºÏÎï×é³ÉÊý¾Ýʱ£¬±ØÐë×Ðϸ¹ÀÁ¿¶¯ÎïÔ׺óøµÄ»îÐÔ¡£¶¯Îï×éÖ¯£¨ÓÈÆäÊǸÎÔࣩÖеÄÌÇÔ­ÔÚÔ׺ó»áѸËÙ½â¾Û³ÉD-ÆÏÌÑÌÇ£¬ËùÒÔ£¬Òª±£´æÌÇÔ­£¬¾ÍµÃÁ¢¼´½øÐÐÉî¶ÈÀ䶳¡£²¸È鶯ÎïÄÚ²¿Æ÷¹Ù£¨Èç¸Î¡¢Éö¡¢ÄԺ͵°Àà¡¢±´ÀàËùÌṩµÄD-ÆÏÌÑÌÇÖ»Õ¼ÒûʳÖÐD-ÆÏÌÑÌǵÄһС²¿·Ö¡£ºìÉ«µÄÐÂÏÊÈâÀà½öº¬¼«ÉÙ¿ÉÀûÓõÄ̼ˮ»¯ºÏÎD-ÆÏÌÑÌÇ¡¢D-¹ûÌǺÍD-ºËÌÇ£©£¬¶øÕâЩ̼ˮ»¯ºÏÎï±»Èܳö½øÈëÈâÖ­ºÍÈâÌÀ¡£ÈéÖÆÆ·ÌṩÁ˲¸È鶯Îï̼ˮ»¯ºÏÎïµÄÖ÷ÒªÀ´Ô´£¬Å£È«È麬̼ˮ»¯ºÏÎïÔ¼4.9%£¬ÍÑÖ¬Èé·Ûº¬ÈéÌÇÁ¿³¬¹ý50%¡£

    ²é¿´Ò»Ð©Ê³Îï³É·Ö±í±ã¿ÉÖªµÀ£¬Í¨³£¹ÈÀàµÄµí·Ûº¬Á¿×î¸ß¶øÌǺ¬Á¿×îµÍ¡£Ë®¹ûÀàÓÎÀëÌÇ×î¶à£¬µí·Û×îÉÙ¡£ÒԸɻù¼ÆË㣬ˮ¹ûµÄ¿Éʳ²¿·Öͨ³£º¬80¡«90%µÄ̼ˮ»¯ºÏÎï¡£¶¹Àຬµí·Û²»¶à²»ÉÙ£¬µ«º¬ÓдóÁ¿µÄ²»¿ÉÀûÓõÄ̼ˮ»¯ºÏÎï¡£

ÔÚÖ²Îï½ç£¬¹ã·º·Ö²¼×ŶàÖÖÌÇÜÕ¡£ÔÚÊ®×Ö»¨¿ÆÖ²ÎïÖдóÁ¿´æÔÚ×ÅijЩ¾ßÓÐÉúÀí»îÐÔµÄÁòÆÏÌÇÜÕ£¨È·ÇгÆ֮Ϊ¡°½æ×ÓÓ͸̡±£©¡£½æ×ÓÓ͸̾­Ã¸Ë®½â²úÉú½æ×ÓÓÍ¡¢ëæºÍ¼××´ÏÙÖ×ËØ¡£ÈËÃÇÒѾ­Ñо¿ÁËËüÔÚÈËÌåÖпÉÒɵļ××´Öײ¡Ô´ÐÔÖÊ¡£µ«Ä¿Ç°»¹²»ÈÏΪʳÓÃÐÂÏʾíÐIJˣ¨ÆäÖнæ×ÓÓ͸ÌÁ¿Îª300¡«1000ppm£©¡¢»¨Ò¬²Ë¡¢±§×Ó¸ÊÀ¶¡¢Îßݼ¡¢Îßݼ¸ÊÀ¶¡¢Ð¡Âܲ·Ö®ÀàʳÎïÖеĽæ×ÓÓÍÜÕÊýÁ¿»áÒýÆðÓꦵÄÉúÀíЧӦ¡£ÉúÇèÜÕÔÚÒ»¶¨Ê߲˽þ×ÕÌõ¼þÏ£¬Í¨¹ýøˮ½âÄÜÊͷųöÇ軯Çâ¡£ÈËÃǶ¼ÖªµÀÉúÇèÜÕÊÇijЩ¶¯ÎïËÇÁϾ綾ÐÔµÄÖ÷ÒªÀ´Ô´¡£¿ÉÊÇÔÚ·¢´ï¹ú¼ÒµÄƽ³£Ê³ÎïÖУ¬ÉúÇèÜÕûÓлîÐÔ¡£Ä³Ð©Íâ¹úÆ·ÖֵIJ˶¹ºÍľÊí¿É²úÉú¸ß´ï0.3%µÄÇ軯Ç⣨°´ÖØÁ¿¼Æ£©£¬µ«±é²¼ÔÚÃÀ¹úµÄ²Ë¶¹²úÇ軯ÇâµÍÓÚ0.02%¡£Ôí½ÇÜÕÀࣨÀà¹Ì´¼ºÍÈýÝÆϵ»¯ºÏÎïµÄ±íÃæ»îÐÔÌÇÜÕ£©»áÒÔµÍŨ¶È³öÏÖÔÚ²èÒ¶¡¢²¤²Ë¡¢Â«Ëñ¡¢Ìð²Ë¡¢ÌÇÓÃÌð²Ë£¨0.3%£©¡¢¸ÊÊí¡¢´ó¶¹£¨0.5%£©¡¢ÜÙÞ££¨2¡«3%£©¡¢»¨Éú¼°ÆäËü¶¹Àà¡£

 

Lesson 2 Carbohydrates

 

extraction ÌáÈ¡(·¨),ÝÍÈ¡(·¨),³éÌá·¨

milling ¢ÙÑÐÄ¥,ÄëËé,Ä¥Ëé,·ÛËé ¢ÚÄ¥(Ãæ)·Û

dehydration ÍÑË®(×÷ÓÃ),È˹¤¼ÓÈȸÉÔï(×÷ÓÃ)

underlie vt.¢ÙλÓÚ¡­µÄÏÂÃæ,·ÅÔÚ¡­ÏÂÃæ ¢ÚÖ§³Ð;¹¹³É ¢ÛÇü·þÓÚ ¢Ü(ȨÀû,ËØÅâµÈ)ÓÅÏÈÓÚ

underlying  (ÀíÂÛ,Õþ²ß,ÐÐΪµÈ)µÄ»ù´¡

chelation  òüºÏ

association n.¢ÙÁªºÏ;ÁªÏµ,ÁªÃË,ºÏ»ï,½»¼Ê,½»Íù ¢ÚÁªÏë ¢ÛЭ»á,ÉçÍÅ ¢Ü[»¯]µÞºÏ(×÷ÓÃ)

hygroscopicity ÎüʪÐÔ               diffusion À©É¢ÐÔ

osmosis Éø͸ÐÔ                     viscosity Õ³¶È

pasticity¿ÉËÜÐÔ

trial-and-error ·´¸´ÊÔÑé;²»¶ÏÃþË÷

ingest ¿Ú·þ,¿Úʳ

terminology n. ÊõÓïѧ;ÊõÓï,רÃÅÃû´Ê

corn ¢ÙÓñÃ× ¢Ú¹ÈÎï(·ºÖ¸ÓñÃ×,ºÚÂó,ÑàÂó,СÂóµÈ) ¢Û¹ÈÁ£ ¢ÜÖƳÉËéÁ£ ¢ÝÓÃÑÎëçÖƵÄ

syrup  Ìǽ¬,ÌÇË®(¹Þ)  

corn syrup µí·ÛÌǽ¬,ÆÏÌÑÌǽ¬      cornstarchÓñÃ×µí·Û      corn sugar ÆÏÌÑÌÇ

pentosan Îì¾ÛÌÇ

malabsorption n.[Ò½]ÎüÊÕ²»Á¼,ÑøÁÏÎüÊÕÕÏ°­ 

 mal- ¢Ù±íʾ¡°»µ¡±,¡°¶ñ¡±,¡°²»Á¼¡± ¢Ú±íʾ ¡°²»¡±,¡°·Ç¡±,¡°²»µ±¡±

adverse a.¢Ù(ÔÚλÖûò·½ÏòÉÏ)ÄæµÄ,Ïà·´µÄ,µÐ¶ÔµÄ ¢Ú²»ÀûµÄ,Óк¦µÄ ¢Û[Ö²](Ò¶×ÓµÈ)³¯×Å

        ¾¥µÄ,¶ÔÉúµÄ

gelatinize ¢Ù½º(Äý)»¯ ¢Ú(µí·Û)ºý»¯     gelatinized starches ºý»¯µí·Û

ruminant ·´Û»¶¯Îï

hydrolyzate Ë®½âÎï

rumen Áöθ(µÚһθ)

intriguing vt.¢ÙÓùî¼ÆÈ¡µÃ,[¹Å]ºåÆ­ ¢Ú(ÐÂÎÅÓÃÓï)ÒýÆð¡­µÄÐËȤ(»òºÃÆæ)

intrigue n.¢ÙÒõı,¹î¼Æ ¢Ú˽ͨ vi.²ß»®Òõı,µ·¹í,˽ͨ

expend vt.Ïû·Ñ,»¨·Ñ(ʱ¼ä,¾«Á¦,½ðÇ®µÈ);Óùâ,ºÄ¾¡

glycogen ÌÇÔ­,¶¯Îïµí·Û

trivial a.¢ÙËöϸµÄ,Çá΢µÄ;²»ÖØÒªµÄ,¼ÛÖµ²»´óµÄ ¢Úƽ³£ÈË,ƽ·²µÄ;(Ãû³Æ)ͨË×µÄ ¢Û(ÈË)

      dz±¡µÄ,ÇḡµÄ,ÎÞÄܵÄ,ȱµÂµÄ

xylose ľÌÇ

nomenclature n.¢ÙÃû´Ê,Êõ´Ê ¢ÚÃüÃû(¹ý³Ì),ÃüÃû·¨ ¢Û(ijһѧ¿ÆµÄ)ÊõÓï±í,ÊõÓO

aliphatic Ö¬·¾×åµÄ,ÊôÓÚ¿ªÁ´Ì¼»¯ºÏÎïµÄ

polyhydroxy ¶àôÇ»ù

aldehyde È©                aldosesÈ©ÌÇ

ketoneͪ                   ketosesͪÌÇ

hemiacetal°ëËõÈ©

prevail vi.¢Ùʤ(¹ý),ÓÅʤ,³É¹¦,×àЧ ¢ÚÁ÷ÐÐ,Ê¢ÐÐ,ÆÕ±é  ¡« on ˵·þ,Ȱ˵,ÓÕµ¼

cyclic»·×´µÄ

designate vt.¢ÙÖ¸Ã÷,Ö¸³ö,±êʾ ¢ÚÖ¸¶¨,Ñ¡ÅÉ ¢Û°Ñ¡­½Ð×ö,³Æºô

append vt.¢Ù¸½¼Ó¢ÚÌùÉÏ,¹ÒÉÏ

trioses±ûÌÇ                           tetroses¶¡ÌÇ

pentosesÎìÌÇ                         hexosesÒÑÌÇ

levulose×óÐýÌÇ,¹ûÌÇ

hexuloseÒÑͪÌÇ,

asymmetric²»¶Ô³Æ

D-glycero- D-¸ÊÓÍ

moiety n.¢ÙÒ»°ë(ÓÈÓÃÓÚ·¨ÂÉ·½Ãæ);Ô¼Ò»°ë ¢Ú×é³É²¿·Ö;Ò»·Ý(ÓÈÖ¸Õþ¸®¸ø¸æÃÜÕßµÄÒ»·Ý±¨

       ³ê)  ¢Û(²¿ÂäµÄÁ½¸ö»ù±¾·ÖÖ§ÖÐ)Ò»¸ö·ÖÖ§

enolizeʹϩ´¼»¯        enolaseÏ©´¼»¯Ã¸       enolizationÏ©´¼»¯×÷ÓÃ

alkaline¼îµÄ,Ç¿¼îµÄ     alkali n.¼î,Ç¿¼î

monosaccharideµ¥ÌÇ

disaccharideË«ÌÇ

condenseÀäÄý,ËõºÏ,ÄýËõ,ŨËõ

oligo-and-polysaccharides µÍ¾ÛÌÇ-¶à¾ÛÌÇ       oligo-  ÉÙ,ȱ·¦,[ר]¹Ñ,µÍ

glucanÆϾÛÌÇ       (=glucosan)

fructan¹û¾ÛÌÇ

inulin¾Õ·Û         inulase¾Õ·Ûø

phosphorylateÁ×Ëữ    phosphorylaseÁ×Ëữø

nucleotideºËÜÕËá       nucleotidase ºËÜÕø

nucleosideºËÜÕ         nucleoproteinºËµ°°×

derivativeÑÜÉúÎï

glycoseµ¥ÌÇ           glycosidesÌÇÜÕ,ÅäÌÇÎï      glycosan¾ÛÌÇ        

glyconic acidsÌÇËá

glyceric acids¸ÊÓÍËá

glycuronic acid ÌÇÈ©Ëá

homoglycan¾ù¾ÛÌÇ

hexosanÒѾÛÌÇ                   galactan°ëÈé¾ÛÌÇ

mannan¸Ê¶¾ÛÌÇ                 pentosanÎì¾ÛÌÇ

heteroglycanÔÓ¾ÛÌÇ               deheteroglycanË«ÔÓ¾ÛÌÇ

aldaric acid ÌǶþËá       

tartaric acidÈ÷ʯËá

reducing function»¹Ô­ÐÔ¹¦ÄÜÍÅ

alginplÔåËá

algin ¢ÙÔåëÃ,º£ÔåËØ[Ôö³í¼Á] ¢ÚºÖÔ彺,ÔåËá,ÔåëÃËá alginic a. ¡« acid ÔåëÃËá

 

 

 

 

 

exudate Éø³öÎï(Òº),Á÷³öÎï(Òº)

mucopolysaccharide Õ³¶àÌÇ       mucosity n.Õ³(ÐÔ)    mucus n.[Éú](ÓÉճĤ·ÖÃÚµÄ)Õ³Òº

alcohol ¢Ù´¼,´¼Ôª ¢ÚÒÒ´¼,¾Æ¾«

alditol¶àôÇÌÇ´¼,È©´¼

triitol±ûÌÇ´¼

glycerol¸ÊÓÍ,±ûÈý´¼

sorbitolɽÀæ´¼

affinity ¢ÙÇ׺ÏÐÔ ¢ÚÇ׺ÏÊÆ ¢Û°®ºÃÒûÁÏ(Ò»ÖÖÒûÁÏÃû³Æ)

heptitol¸ýÌÇ´¼

perseitol¸Ê¶¸ýÌÇ´¼

octitolÐÁÌÇ´¼

avocadoïÉÀæ

condensed N-acetylated amino sugar Ëõ¾ÛN-ÒÒõ£°±»ùÌÇ

glycoproteinÌǵ°°×

chitin¿Ç¶àÌÇ,¼×¿ÇÖÊ,¼¸¶¡ÖÊ

deoxy  deoxy- ÍÑÑõ

gum ¢ÙÖ²Îコ,(Ê÷)½º ¢ÚËÉÖ¬ ¢Û[¸´]½ºÖÊÈíÌÇ

mucilage ¢ÙÕ³½¬,Õ³Òº ¢ÚÕ³½º

glucosinolate½æ×ÓÓÍÜÕ

thioglycosideÁò´úÌÇÜÕ    thiol (mercaptan) Áò´¼    thioctic acidÁòÐÁËá

cyclitols»·¶à´¼      

myoinositol¼¡´¼         myogen n.¼¡½¬µ°°×      myology n. ¼¡Ñ§

phytic acid Ö²Ëá

reductone »¹Ô­Íª

deplete vt.¢Ù(²¿·Ö»òÈ«²¿µØ)Ū¿Õ,ʹ¿ÕÐé,ºÄ¾¡¡­µÄ¾«Á¦(»ò×ÊÔ´µÈ)

         ¢Ú[Ò½]¼õÉÙ¡­µÄÌåÒº,·ÅÈ¥¡­µÄѪ

date º£Ô棬ÔæÒ¬×Ó

GREen peaÍ㶹         green beanÇ൶¶¹

raffinoseÃÞ×ÑÌÇ

stachyoseË®ËÕÌÇ

verbascoseëÈﻨÌÇ

postmortemÔ׺ó

depolymerize½â¾Û

thioglucosideÁòÆÏÌÇÜÕ

bouillonÌÀ,¸þ(ÓÃÈâ,¼¦µÈÖó³É)

brothÈâÌÀ(΢ÉúÎïµÄÓªÑøÅàÑø»ù)

skimƲȥ,Ʋ³ö(¸¡ÔÚÉÏÃæµÄÓÍÖ¬,ÅÝÄ­µÈ)         skim milk ÍÑÖ¬Èé

legume ¢Ù¼Ô(¹û);¢Ú¶¹¿ÆÖ²Îï ¢Û¶¹¼Ô,¶¹

cruciferaeÊ®×Ö»¨¿Æ

malt ¢ÙÂóÑ¿£»¢ÚÂóÑ¿¾Æ£¬Æ¡¾Æ

  nitrileëæ

goitrin¼××´ÏÙÖ×ËØ

goitrigenic¼××´ÏÙÖײ¡Ô´

cauliflower»¨Áø²Ë

brussel sprouts  ±§×Ó¸ÊÀ¶,±±¾©ÑÀ²Ë

turnipÎßݼ

rutabagasÎßݼ¸ÊÀ¶

radishСÂܲ·

cyanogeneticÉúÇè,ÄܲúÉúÇ軯ÎïµÄ     cyanideÇ軯ºÏÎï      cyanidinÇ趨

glycosideÜÕ

maceration ½þ͸,ÅÝÈí,½þ×Õ(×÷ÓÃ)

maniocľÊí

cassavaľÊí

saponinÔí½ÇÜÕ,ÔíËØ,Ôí׺ÌÇ

steroidçÞ×廯ºÏÎï,Àà¹Ì´¼

triterpenoidÈýÝÆϵ»¯ºÏÎï

asparagusʯµó°Ø,«Ëñ,ÁúÐë²Ë

yamÊíÝ÷,ɽҩ,¸ÊÊí,ɽÓó

alfalfa×Ï»¨ÜÙÞ£[ÃÀ],ÜÙÞ£

¡¡  ÃâÔðÉùÃ÷£º±¾Õ¾ÐÅÏ¢½ö¹©²Î¿¼£¬°æȨºÍÖø×÷Ȩ¹éÔ­×÷ÕßËùÓУ¡ Èç¹ûÄú£¨×÷Õߣ©·¢ÏÖÇÖ·¸ÄúµÄȨÒ棬ÇëÓëÎÒÃÇÁªÏµ£ºQQ-50662607£¬±¾Õ¾½«Á¢¼´É¾³ý£¡
 
ÔĶÁ£º ´Î

¡¾ ÍƼö ¡¿ ¡¾ ´òÓ¡ ¡¿
Ïà¹ØÐÂÎÅ      
±¾ÎÄÆÀÂÛ       È«²¿ÆÀÂÛ
·¢±íÆÀÂÛ

µãÆÀ£º ×ÖÊý
ÐÕÃû£º
ÄÚÈݲéѯ

ÈÈÃÅרÌâ
¡¡Í¼Æ¬ÐÂÎÅ